Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Des ; 192: 108702, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33154608

RESUMEN

Size, shape and hot spots are crucial to optimize Raman amplification from metallic nanoparticle (NPs). The amplification from radius = 1.8 ± 0.4 nm ultra-small silver NPs was explored. Increasing NP density redshifts and widens their plasmon that, according to simulations for NPs arrays, is originated by the reduction of the interparticle distance, d, becoming remarkable for d ≤ R. Inter-particle interaction red-shifts (N130 nm) and widens (N90 nm) the standard plasmon of non-interacting spherical particles. Graphene partly delocalizes the carriers enhancing the NIR spectral weight. Raman amplification of graphene phonons is moderate and depends smoothly on d while that of Rhodamine 6G (R6G) varies almost exponentially due to their location at hotspots that depend strongly on d. The experimental correlation between amplification and plasmon position is well reproduced by simulations. The amplification originated by the ultra-small NPs is compared to that of larger particles, granular silver films with 7 < R < 15 nm grains, with similar extinction values. The amplification is found to be larger for the 1.8nm NPs due to the higher surface/volume ration that allows higher density of hot spots. It is demonstrated that Raman amplification can be efficiently increased by depositing low density layers of ultra-small NPs on top of granular films.

2.
Nanomaterials (Basel) ; 10(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349274

RESUMEN

The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) single-layer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 ± (5%), for membranes with ~100 nm pore depth, ~18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (~400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.

3.
ACS Appl Mater Interfaces ; 9(4): 4119-4125, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28054769

RESUMEN

The detection, identification, and quantification of different types of molecules and the optical imaging of, for example, cellular processes are important challenges. Here, we present how interference-enhanced Raman scattering (IERS) in adequately designed heterostructures can provide amplification factors relevant for both detection and imaging. Calculations demonstrate that the key factor is maximizing the absolute value of the refractive indices' difference between dielectric and metal layers. Accordingly, Si/Al/Al2O3/graphene heterostructures have been fabricated by optimizing the thickness and roughness and reaching enhancement values up to 700 for 488 nm excitation. The deviation from the calculated enhancement, 1200, is mainly due to reflectivity losses and roughness of the Al layer. The IERS platforms are also demonstrated to improve significantly the quality of white light images of graphene and are foreseen to be adequate to reveal the morphology of 2D and biological materials. A graphene top layer is adequate for most organic molecule deposition and often quenches possible fluorescence, permitting Raman signal detection, which, for a rhodamine 6G (R6G) monolayer, presents a gain of 400. Without graphene, the nonquenched R6G fluorescence is similarly amplified. The wavelength dependence of the involved refractive indices predicts much higher amplification (around 104) for NIR excitation. These interference platforms can therefore be used to gain contrast and intensity in white light, Raman, and fluorescence imaging. We also demonstrate that surface-enhanced Raman scattering and IERS amplifications can be efficiently combined, leading to a gain of >105 (at 488 nm) by depositing a Ag nanostructured transparent film on the IERS platform. When the plasmonic structures deposited on the IERS platforms are optimized, single-molecule detection can be actively envisaged.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...